MOS FET Relays

G3VM-21BR/ER

Higher Power, 4A switching with a 20V load, DIP package. Low $20 \mathrm{~m} \Omega$ ON Resistance.

- Continuous load current of 4A (Connection C: 8A)
- Switches minute analog signals
- Dielectric strength of $2,500 \mathrm{Vrms}$ between I/O
- RoHS Compliant

Application Examples

- Communication equipment and Measurement devices

NEW

- Security systems and Power circuits
- Factory Automation equipment

Note: The actual product is marked differently from the image shown here.

List of Models

Package Type	Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
DIP6	SPST-NO	PCB terminals	20 V	G3VM-21BR	50	---
		Surface-mounting terminals		G3VM-21ER		
				G3VM-21ER(TR)	---	1,500

Note: The AC peak and DC value are given for the load voltage.

- Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-21BR

Note: The actual product is marked differently from the image shown here.

G3VM-21ER

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-21BR

- PCB Dimensions (Bottom View) G3VM-21BR

G3VM-21ER

Note: The actual product is marked differently
from the image shown here. from the image shown here.

- Actual Mounting Pad Dimensions (Recommended Value, Top View)
G3VM-21ER

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item			Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current		I_{F}	30	mA	
	Repetitive peak LED forward current		I_{FP}	1	A	$100 \mu \mathrm{~s}$ pulses, 100 pps
	LED forward current reduction rate		$\Delta I_{F} /{ }^{\circ} \mathrm{C}$	-0.3	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage		V_{R}	5	V	
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Load voltage (AC peak/DC)		$\mathrm{V}_{\text {OFF }}$	20	V	
	Continuous load current	Connection A	I_{0}	4	A	Connection A: AC peak/DC Connection B and C: DC
		Connection B		4		
		Connection C		8		
	ON current reduction rate	Connection A	$\Delta \mathrm{I}_{10} /{ }^{\circ} \mathrm{C}$	-40	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$
		Connection B		-40		
		Connection C		-80		
	Pulse on current		I_{OP}	12	A	$\mathrm{t}=100 \mathrm{~ms}$, Duty = 1/10
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)			$\mathrm{V}_{\text {- }}$	2,500	$\mathrm{V}_{\text {rms }}$	AC for 1 min
Operating temperature			Ta	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature			$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature (10 s)			---	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Connection Diagram

Connection A	
Connection B	
Connection C	

Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item			Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage		V_{F}	1.18	1.33	1.48	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current		I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals		$\mathrm{C}_{\text {T }}$	---	70	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current		I_{FT}	---	0.5	3	mA	$\mathrm{I}_{0}=1 \mathrm{~A}$
Output	Maximum resistance with output ON	Connection A	R_{ON}	---	20	50	$\mathrm{m} \Omega$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$
		Connection B		---	10	---	$\mathrm{m} \Omega$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$
		Connection C		---	5	---	$\mathrm{m} \Omega$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~A}, \mathrm{t}<1 \mathrm{~s}$
	Current leakage when the relay is open		$\mathrm{I}_{\text {LEAK }}$	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=20 \mathrm{~V}$
	Capacity between terminals		$\mathrm{C}_{\text {OFF }}$	---	1,000	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Capacity between I/O terminals			$\mathrm{C}_{\text {- }}$	---	0.8	--	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
Insulation resistance between I/O terminals			$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$
Turn-ON time			$\mathrm{t}_{\text {ON }}$	---	2.5	5.0	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time			$\mathrm{t}_{\text {OFF }}$	---	0.1	1.0	ms	

Note:
2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions
Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	--	16	V
Operating LED forward current	I_{F}	5	10	25	mA
Continuous load current (AC peak/DC)	I_{O}	---	--	4	A
Operating temperature	T_{a}	-20	--	65	${ }^{\circ} \mathrm{C}$

- Engineering Data

Precautions

Be sure to read the precautions and information common to all G3VM MOS FET relays, contained in the Technical User's Guide, "MOSFET Relays, Technical Information" for correct use.

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROM

OMRON ELECTRONIC COMPONENTS LLC
55 E . Commerce Drive, Suite B
Schaumburg, IL 60173

847-882-2288

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

